• این آدرس ایمیل توسط spambots حفاظت می شود. برای دیدن شما نیاز به جاوا اسکریپت دارید
  • 02144129247-09122847548
این آدرس ایمیل توسط spambots حفاظت می شود. برای دیدن شما نیاز به جاوا اسکریپت دارید

پی نواری و برخی ایرادات در طراحی اینگونه پی ها
امروزه متداولترین نوع پی در ساختمانها ، پی نواری میباشد. اما با وجود استفاده عمومی از این پیها به نظر میرسد که هنوز در روش طراحی این پیها ابهاماتی وجود دارد، که نیاز به بحث و بررسی آنها میباشد. در این مقاله ابتدا به روش معمول در طراحی این پیها توسط همکاران اشاره کوتاهی میشود و در قسمت بعدی ابهامات موجود در این روش طراحی مطرح و مورد بررسی قرار میگیرد.


-روش معمول در طراحی پیهای نواری
معمولآ مهندسان محاسب پیهای نواری را با فرض صلبیت نسبی پی در مقایسه با خاک زیر پی و در نتیجه با فرض توزیع یکنواخت و یا خطی تنش در زیر پی و بدون استفاده از برنامه های کامپیوتری مبتنی بر تئوریهای اجزاء محدود (نظیر نرمافزار SAFE) طراحی میکنند. برای طراحی از 2 ترکیب بارگذاری زیر مطابق آیین نامه ACI استفاده میشود:
1.4D+1.7L
 0.75(1.4D+1.7L+1.87E)
:D بار مرده ، L :بار زنده و E :بار زلزله میباشد
سپس با در نظر گرفتن کل مجموعه پیها به عنوان یک عضو سازه ای گشتاور دوم اینرسی این مجموعه در هر دو جهت اصلی سازه و حول نقطه مرکز سختی پی محاسبه میشود. همچنین با محاسبه مجموع بارهای ثقلی و لنگرهای موجود در مرکز سختی پی، برای هر یک از دو حالت بارگذاری بالا و با استفاده از فرمول زیر توزیع تنش در زیر پی محاسبه میشود:

در فرمول بالا A مجموع مساحت پی ، P مجموع بارهای عمودی وارد بر پی ، Mx,My مجموع گشتاورهای وارد بر پی حول محورها ی X,Y (گذرنده از مرکز سختی پی)، مقادیر Ix,Iy گشتاور دوم اینرسی مجموعه پی حول محورهای X,Y و مقادیر X,Y فاصله افقی و عمودی هر نقطه دلخواه پی از مرکز سختی مجموعه پی میباشد.
با به دست آمدن توزیع تنشها در زیر پی ، هر یک از نوارهای پی به صورت یک تیر چند دهانه یکسره که بار تیر برابر حاضلضرب تنش زیرپی در عرض پی و به صورت گسترده و تکیه گاههای آن در واقع همان ستونها میباشند، توسط برنامه هایی نظیر SAP2000 مورد آنالیز قرار گرفته و با محاسبه مقادیر لنگرها در نقاط مختلف ، مقدار آرماتورهای مورد نیاز در بالا و پایین نوارهای پی محاسبه میشود. (معمولآ در جهت اطمینان و راحتی محاسبات تنش وارد بر نوارهای پی به صورت یکنواخت و برابر تنش ماکزیمم زیر پی در نظر گرفته میشود).در مرحله آخر در دهانه های بادبندی شده مقدار آرماتورهای بالا در زیر ستونها و آرماتورهای پایین در وسط دهانه مقداری افزایش داده میشود.(حدود 50 درصد)


-برخی ابهامات و اشکالات موجود در این روش:
اما همانطور که در ابتدا نیز اشاره شد، این روش دارای ابهامات و اشکالاتی میباشد؛ اشکالاتی که باعث تفاوت بعضـآ بسیار زیاد مابین نتایج روش فوق الذکر با روش طراحی کامپیوتری (بر اساس نرم افزار SAFE) میشود. به این ابهامات در زیر اشاره میشود:


1- اولین ابهام در فرض صلب بودن پی میباشد. برای آنکه یک پی به صورت صلب فرض شود، باید یکی از دو شرط زیر ارضا شود:
الف- در صورتی که مقدار بار و فاصله ستونهای مجاور تفاوتی بیش از 20 در صد نداشته باشند و میانگین طول دو دهانه مجاور کمتر از باشد.
در این فرمول B عرض پی ، Ks مدول عکس العمل زمین ، I ممان دوم اینرسی مقطع عرضی پی و E مدول الاستیسیته پی میباشد.
ب- در صورتی که پی نواری ، نگهدارنده یک سازه صلب باشد که به خاطر سختی سازه ، اجازه تغییر شکلهای نامتقارن به سازه داده نمیشود. برای تعیین سختی سازه باید به کمک یک آنالیز ، سختی مجموعه پی، سازه و دیوارهای برشی ُرا با سختی زمین مقایسه نمود .(جزییات و فرمولهای این قسمت درکتب مختلف موجود میباشد).
معمولآ مهندسان محاسب از شرط اول استفاده نموده و صلب بودن پی را نتیجه میگیرند. اما اشکال اساسی آنجاست که اکثریت ساختمانهای متداول ، پیش شرط این شرط را دارا نمیباشند و اساسآ این شرط برای این ساختمانها قابل استفاده نمیباشد. زیرا با توجه به آنکه اکثریت ساختمانها دارای سیستم سازه ای بادبندی میباشند، در ترکیب بار زلزله در دو ستون مجاور یک دهانه بادبندی، به علت آنکه در یک ستون نیروی فشاری قابل توجه و در ستون دیگر نیروی کششی قابل توجه به وجود می آید، بار این دو ستون (با در نظر گرفتن علامت بارها) اختلافی بسیار بیشتر از 20 درصد دارند و به این جهت شرط الف به طور کلی غیر قابل استفاده میباشد. و اگر پی دارای شرایط صلبیت باشد، بر اساس شرط دوم میباشد و نه شرط اول.


2-دومین خطایی که در این روش وجود دارد، محدود کردن ترکیب بارها به تنها دو ترکیب بار میباشد و حداقل یک ترکیب بار مهم دیگر به شرح زیر نادیده گرفته شده میشود:
3) 0.75*(1.2D+1.87E)
این ترکیب بار از آنجا دارای اهمیت میباشد که با توجه به حذف بار زنده و کاهش ضریب بارهای مرده، مقدار نیروی کششی (اصطلاحآ uplift) در ستونهای دهانه های بادبندی به مقدار قابل توجهی افزایش می یابد ، که این مساله سبب بالا رفتن مقدار آرماتور بالا در زیر ستونها در روش محاسبه با نرم افزار SAFE و در نتیجه اختلاف بیشتر مابین نتایج دو روش با همدیگر میشود.


3-اما عمده ترین ابهام و ایراد وقتی به وجود می آید که پس از محاسبه مقادیر تنشها، نوارهای پی به صورت تیرهای یکسره در نظر گرفته شده و تنشهای زیر پی به صورت بار خارجی به تیر واردمیشود و تیر مورد آنالیز قرار میگیرد. این روش تا وقتی که در هر نوار فقط دو ستون وجود داشته باشد (سازه معین باشد)، هیچ ایرادی ندارد. اما ایرادها وقتی ایجاد میشود که در هر نوار تعداد ستونها 3 و یا بیشتر باشد. در این حالت نوارها به صورت تیر نامعین در می آیند. مقادیر واکنشها و تلاشهای داخلی در تیرهای نامعین بستگی کامل به شرایط مرزی تیر و معادلات سازگاری حاصل از شرایط مرزی دارد و در صورت تفاوت شرایط مرزی، صرف آنکه شرایط ظاهری آنها شبیه هم باشد، نمیتواند دلیل قانع کننده ای جهت برابر دانستن نتایج آنالیز برای دو حالت باشد. برای یک تیر چند دهانه یکسره شرایط مرزی به شرح زیر است:
الف- صفر بودن تغیییر مکانها در محل تکیه گاهها
ب- مساوی بودن مقدار دوران ها در حد مرزی چپ و راست هر یک از تکیه گاهها (شرط به هم پیوستگی تیر)
اما در نوارهای پی شرط مرزی الف در بالا به شکل دیگری میباشد.با توجه به آنکه پی به صورت تیر بر بستر ارتجاعی در نظر گرفته میشود، مقدار تنش در هر نقطه ضریبی از مدول عکس العمل زمین میباشد((q=Ks.d و به این ترتیب تغییر مکان در محل تکیه گاهها (و هر نقطه دیگر از پی) بر خلاف شرط الف صفر نمیباشد و برابر حاصل تقسیم تنش موجود بر مدول عکس العمل زمین میباشد(d=q/Ks). ضمن آنکه در این حالت اساسآ مقادیر واکنشهای تکیه گاهی (که همان نیروهای موجود در ستونها میباشند) موجود است و مقادیر تلاشهای داخلی تیر باید به گونه ای محاسبه گردند که با این واکنشها همخوانی داشته و در تعادل باشند. این در حالی است که در تحلیل نتایج حاصل از این روش، مقادیر واکنشهای تکیه گاهی با نیروهای موجود در ستونها تفاوت بسیاری دارد که خود نشاندهنده غلط بودن این روش میباشد. به طور مثال در ستونهای پای بادبند که ممکن است یک نیروی کششی قابل توجه وجود داشته باشد بر اساس نتایج این روش معمولآ یک واکنش به صورت یک نیروی فشاری به وجود می آید (بیش از 100 در صد اختلاف!!).
اما ابهام آخری که وجود دارد اینست که طرفداران این روش اگر به درست بودن روش خود اطمینان دارند چرا مقادیر میلگردهای به دست آمده برای دهانه های بادبندی را افزایش می دهند؟ و این افزایش طبق چه معیاری میباشد؟ آیا این مساله خود نشان دهنده عدم اطمینان طرفداران این روش به نتایج حاصله نمیباشد؟

سازه‌های بتنی

 

سازه بتنی سازه‌ای است که در ساخت آن از بتن یا به طور معمول بتن آرمه (سیمان، شن، ماسه و فولاد به صورت میلگرد ساده یا آجدار) استفاده شده باشد. در ساختمان در صورت استفاده از بتن آرمه در قسمت ستون‌ها و شاه تیر‌ها و پی، آن ساختمان یک سازه بتنی محسوب می‌شود.

 

مزایای سازه‌های بتنی

۱- ماده اصلی بتن که شن و ماسه می‌باشد ارزان و قابل دسترسی است.
۲- سازه‌های بتنی که مطابق با اصول آیین نامه‌ای طراحی و اجرا شده اند، در مقابل شرایط محیطی سخت، مقاومتر از سازه‌های ساخته شده با مصالح دیگر هستند.
۳- به علت قابلیت شکل پذیری بالای بتن، امکان ساخت انواع سازه‌های بتنی نظیر پل، ستون و ... به اشکال مختلف میسر است.[۱]
۴- سازه‌های بتنی در مقابل حرارت زیاد ناشی از آتش سوزی بسیار مقاوم اند. آزمایشات نشان داده اند که در صورت ایجاد حرارتی معادل ۱۰۰۰ درجه سانتی گراد برای یک نمونه بتن آرمه، حداقل یک ساعت طول می‌کشد تا دمای فولاد داخل بتن، که با یک لایه بتنی با ضخامت ۲٫۵ سانتی متر پوشیده شده است، به ۵۰۰ درجه سانتی گراد برسد.

روش های طراحی سازه‌های بتن آرمه

به طور کلی هدف از طراحی یک سازه، تامین ایمنی در مقابل فروریختگی و تضمین عملکرد مناسب در زمان بهره برداری است. چنانچه مقاومت واقعی یک سازه بطور دقیق قابل پیش بینی بود و در صورتی که بارهای وارد بر سازه و اثرات داخلی آنها نیز با همان دقت قابل تعیین بودند، تامین ایمنی تنها با ایجاد ظرفیت باربری به میزان جزئی بیش از مقدار بارهای وارده ممکن می گشت. لیکن عوامل نامشخص و خطاهای احتمالی متعددی در آنالیز، طراحی و ساخت سازه‌ها وجود دارند که یک حاشیه ایمنی را در طراحی سازه‌ها طلب می‌کنند. مهمترین ریشه‌ها و منابع این خطاها عبارتند از:

الف: بارهایی که در عمل به سازه وارد می‌شوند و همچنین توزیع واقعی آنها ممکن است با آنچه در بارگذاری سازه فرض شده است متفاوت باشند.
ب: رفتار واقعی سازه ممکن است با رفتار تئوریک سازه، که بر اساس آن نیروهای داخلی اعضا محاسبه می‌شوند، تفاوت داشته باشد.
ج: مقاومت واقعی مصالح به کار رفته در ساخت سازه ممکن است متفاوت از مقادیر فرض شده در محاسبات باشد.
د: ابعاد قطعات و محل واقعی میلگرد ها ممکن است دقیقا مطابق آنچه طراح در محاسبات خود فرض کرده نباشد.

بنابراین، انتخاب یک حاشیه ایمنی مناسب امر بسیار دشواری است که نحوه منظور نمودن آن، به صورت یکی از مشخصه‌های اساسی روش های طراحی در آمده است. به طور کلی طراحی سازه‌های بتن آرمه به سه روش زیر صورت می‌گیرد[۲]:

۱: تنش مجاز
۲: مقاومت نهایی
۳: روش طراحی بر مبنای حالات حدی

روش تنش مجاز

این روش که قبلا روش تنش بهره برداری یا روش تنش بار سرویس نامیده می‌شد، اولین روشی است که بصورت مدون برای طراحی سازه‌های بتن آرمه بکارگرفته شد. در این روش یک عضو سازه‌ای به نحوی طراحی می‌شود که تنش های ناشی از اثر بارهای بهره برداری (یا سرویس)، که به کمک تئوری های خطی مکانیک جامدات محاسبه می‌شوند، از مقادیر مجاز تنش ها تجاوز نکنند. منظور از بارهای بهره برداری یا سرویس بارهایی نظیر: بار زنده، بار مرده، بار برف و بار زلزله هستند. این بارها توسط آیین نامه‌های بارگذاری، مانند آیین نامه ۵۱۹ موسسه استاندارد و تحقیقات صنعتی ایران تعیین می‌شوند. در این روش منظور از تنش مجاز تنشی است که از تقسیم تنش حدی ماده، نظیر مقاومت فشاری برای بتن و مقاومت تسلیم برای فولاد، بر ضریب بزرگتر از واحد، به نام ضریب اطمینان به دست می‌آید. تنش های مجاز مصالح توسط آیین نامه‌های محاسباتی تعیین می‌شوند. به عنوان مثال مطابق آیین نامه ACI مقدار تنش فشاری مجاز بتن f' c ۰٫۴۵می باشد.

بدین ترتیب مراحل این روش بطور خلاصه به ترتیب زیر هستند:
۱: تعیین بارهای وارد بر سازه
۲: آنالیز سازه و تعیین تنش ها در مقاطع مختلف به کمک تئوری های کلاسیک اجسام الاستیک
۳: تعیین تنش های مجاز با استفاده از یک آیین نامه محاسباتی
۴: طراحی نهایی مقطع با این محدودیت که در هیچ نقطه‌ای از سازه تنش های ایجاد شده از تنش های مجاز تجاوز نکنند.
این روش به دلیل سادگی و سهولت کاربرد تا چندی قبل به عنوان قابل استفاده ترین روش طراحی سازه‌های بتن آرمه مطرح بود. لیکن نقاط ضعف این روش استفاده از آن را محدود کرده است. مهمترین این نقاط ضعف عبارتند از:
الف: در این روش ایمنی به کمک تنها یک ضریب (ضریب اطمینان) و در یک مرحله منظور می‌شود، از آنجا که عواملی که لزوم تامین یک حاشیه ایمنی را ایجاب می‌کنند دارای ریشه‌ها و شدت های متفاوت هستند، در نظر گرفتن آنها تنها با کمک یک ضریب غیر منطقی است.
ب: بتن ماده‌ای است که تنها تا تنش های معادل نصف مقاومت فشاری آن به صورت الاستیک و خطی عمل می‌کند. بنابراین با بکار بردن درصدی از مقاومت فشاری بتن در محاسبات نمی‌توان اطلاعی از ضریب اطمینان کلی سازه در مقابل فروریختگی به دست آورد.
ج: به کار بردن این روش در طراحی بعضی مقاطع با اشکالات تئوریک مواجه است. به عنوان مثال در مقاطع خمشی تنش واقعی فولاد غالبا کمتر از مقداری است که با این روش محاسبه می‌شود.
تا سال ۱۹۵۶ میلادی روش تنش های مجاز مبنای محاسبات در آیین نامه ACI بود. این روش از سال ۱۹۷۷ تنها در قسمت ضمائم آیین نامه و تحت عنوان روش دیگر طراحی جا داده شد.[۳]

روش مقاومت نهایی

روش مقاومت نهایی که در آیین نامه ACI به نام روش طراحی بر مبنای مقاومت موسوم است، حاصل مطالعات گسترده روی رفتار غیر خطی بتن و تحلیل دقیق مسئله ایمنی در سازه‌های بتن آرمه می‌باشد. روند طراحی در این روش را می‌توان به صورت زیر خلاصه نمود:

۱: باربهره برداری به وسیله ضریبی موسوم به ضریب بار افزایش داده می‌شود، بار حاصله را اصطلاحا بار ضریبدار یا بار نهایی می نامند.
۲: بارهای ضریبدار بر سازه اعمال می‌شوند و به کمک روش های خطی آنالیز سازه ها، نیروی داخلی مقاطع محاسبه می‌شود. به این نیروی داخلی اصطلاحا مقاومت لازم گفته می‌شود. مقاومت لازم در یک مقطع شامل: مقاومت خمشی لازم، مقاومت برشی لازم، مقاومت پیچشی لازم و مقاومت بار محوری لازم است.
۳: برای هر مقطع، مقاومت طراحی آن از حاصلضرب مقاومت اسمی در ضریبی کوچکتر از واحد به نام ضریب کاهش مقاومت به دست می‌آید. مقاومت اسمی، حداکثر مقاومتی است که مقطع قبل از گسیختگی از خود نشان می‌دهد. مقاومت اسمی یک مقطع مشتمل است از: مقاومت خمشی اسمی، مقاومت برشی اسمی، مقاومت پیچشی اسمی و مقاومت بار محوری اسمی.
۴: طراحی مقطع به نحوی که در آن مقاومت لازم از مقاومت طراحی کمتر باشد.
روش طراحی بر مبنای مقاومت، امروزه اساس کار طراحی سازه‌های بتن آرمه می‌باشد.[۴]

روش طراحی بر مبنای حالات حدی

به منظور تکامل روش مقاومت نهایی، به ویژه از نظر نحوه منظور نمودن ایمنی، روش طراحی بر مبتای حالات حدی ابداع گردید. این روش هم اکنون مبنای طراحی در تعدادی از آیین نامه‌های اروپایی است، با این حال این روش هنوز نتوانسته است جای روش مقاومت نهایی را در آیین نامه ACI بگیرد. این روش از نظر اصول محاسبات مربوط به مقاومت، مشابه روش طراحی بر مبنای مقاومت است و تفاوت عمده آن با روش قبل، در نحوه ارزیابی منطقی تر ظرفیت باربری و احتمال ایمنی اعضا می‌باشد. در این روش نیاز های طراحی با مشخص کردن حالات حدی تعیین می‌شوند. منظور از حالات حدی شرایطی است که در آنها سازه مورد نظر خواسته‌های طرح را تامین نمی‌کند. طراحی سازه با توجه به سه حالت حدی زیر صورت می‌گیرد[۵]:

۱: حالت حدی نهایی، که مربوط به ظرفیت باربری می‌شود.
۲: حالت حدی تغییر شکل (مانند تغییر مکان و ارتعاش اعضا)
۳: حالت حدی ترک خوردگی یا باز شدن ترک ها

 

سیستم حرارتی گرمایش از کف که انتقال حرارت به صورت تشعشعی (تابشی) سهم زیادی در فرآیند گرمایشی آن دارد، درمقایسه با سایر سیستمهای حرارتی نه تنها در صرفه جویی و بهینه سازی مصرف انرژی بلکه در مقوله رفاه و آسایش ساکنان ساختمان ها دارای نقاط قوت بسیاری می باشد. در سالهای اخیر، سیستم گرمایشی از کف در کشورهای اروپائی و آمریکا بسیار متداول شده است و دلیل این گسترش روزافزون بهینه بودن مصرف انرژی، توزیع یکسان گرما در تمامی سطح و فضا و دوری از مشکلات موجود در سایر روش ها ، به عنوان مثال سیاه شدن دیوارها، گرفتگی و پوسیدگی لوله ها و… می باشد. استفاده از روش گرمایش از کف جهت گرمایش محل سکونت از دیرباز به طرق مختلف انجام می گرفته است.

بطوریکه رومی ها زیر کف را کانال کشی کرده و هوای گرم را از آن عبور می دادند و کره ای ها دود حاصل از سوخت را قبل از اینکه از دودکش عبور کند از زیر کف انتقال می دادند. در سال ۱۹۴۰ نیز فردی بنام سام لویت برای این منظور لوله های آب گرم را در زیر کف قرار داد. درکشور ایران نیز درمناطق کوهستانی و سردسیر ازجمله آذربایجان این روش مورد استفاده قرار می گرفته، که بیشترین مورد استفاده آن درحمام ها بود.

ادامه مطلب...

در طرح سازه های بلند اخیرا ایده جدیدی ارائه شده است که موسوم به سیستم لوله ای می باشد. در حال حاضر در چهار مورد از پنج ساختمانی که بلندترین ساختمان های دنیا می باشند از این روش استفاده شده است. این ساختمان ها عبارتند از، ساختمان هنکاک برج سیرز و ساختمان استاندارد اویل در شیکاگو و ساختمان مرکز تجارت دنیا در نیویورک . بازده سازه ای سیستم های لوله ای به قدری زیاد می باشدکه در اکثر موارد مقدار مصالح سازه ای مصرف شده برای هر فوت مربع کف (یا سقف) قابل مقایسه با مقدار مصالح مصرف شده در ساختمان های قابی متداول به ارتفاع نصف می باشد.
در طرح لوله ای فرض می شود که عناصر سازه ای پیرامونی ساختمان در مقابل بارهای جانبی همچون یک تیر با مقطع صندوقی (جعبه ای) تو خالی که از زمین طره شده است عمل کند. چون دیوارهای خارجی تمام یا بیشتر بار جانبی را تحمل می کنند، مهار بندی های قطری یا دیوارهای برشی داخلی پر هزینه حذف می گردند.
دیوارهای لوله از ستون هایی تشکیل می شوند که به فواصل کم در مجاورت یکدیگر در اطراف محیط ساختمان قرار می گیرند و به یکدیگر با تیرهای با عمق زیاد که در بالا و پایین آنها سوراخ های پنجره قرار دارند متصل می شوند. این سازه نمایی همچون دیواری با سوراخ های متعدد به نظر می رسد. سختی دیوار نما را می توان با افزودن مهار بندی های مورب (قطری) که اثر خر پامانند ایجاد می کنند زیاد تر نمود. صلبیت لوله چنان زیاد است که در مقابل بارهای جانبی به صورت یک تیر طره ای عمل می کند. لوله خارجی می تواند به تنهایی تمام بارهای جانبی را تحمل کند یا اینکه با افزودن نوعی مهار بندی داخلی می توان لوله را بیشتر تقویت نمود و سخت تر کرد.

ادامه مطلب...

تعریف پل
پل یک سازه است که برای عبور از موانع فیزیکی از جمله رودخانه ها و دره ها استفاده می شود. پلهای متحرک نیز جهت عبور کشتیها و قایقهای بلند از زیر آنها ساخته شده است.
تاریخچه پل
ایجاد گذرگاهها و پلها برای عبور از دره ها و رودخانه ها از قدیمی ترین فعالیتهای بشر است. پلهای قدیمی معمولا از مصالح موجود در طبیعت مثل چوب و سنگ والیاف گیاهی به صورت معلق یا با تیرهای حمال ساخته شده اند. پلهای معلق از کابلهایی از جنس الیاف گیاهی که از دو طرف به تخته سنگها و درختها بسته شده و پلهای با تیر حمال از تیرهای چوبی که روی آنها با مصالح سنگی پوشیده می شد، ساخته شده اند.
ساخت پلهای سنگی به دوران قبل از رومیها بر می گردد که در خاور میانه و چین پلهای زیادی بدین شکل برپا شده است. در اروپا نیز اولین پلهای طاقی را 800 سال قبل از میلاد مسیح، برای عبور از رودخانه ها از جنس مصالح سنگی ساخته اند.

اغلب پلهای ساخته شده توسط رومی ها از طاقهای سنگی دایره شکل با پایه های ضخیم تشکیل یافته است.در ایران نیز ساختن پلهای کوچک وبزرگ از زمانهای بسیار قدیم رواج داشته و پلهایی نظیر سی و سه پل، پل خواجو و پل کرخه بیش از 400 سال عمر دارند.

ادامه مطلب...

 

سقف های کاذب و آکوستیک آلومینیومی گریلیوم در رده ی سقف های متحرک ، باز و دکوراتیو بوده و نمای قابل رؤیت آن تشکیل شده از تیغه های ایستاده و متقاطعی که داخل آنها خالی است. گریلیوم زیر مجموعه ی مهمی از سقف های کاذب سلولی را تشکیل داده و با توجه به عدم کاهش حجم ، شکست صوت ، تنوع رنگ بندی ، قابلیت نور پردازی از سطح و از پشت ، ... در این گروه ، گزینه ای ایده آل برای اماکن عمومی ، تجاری ، ... میباشد.

 بدلیل اهمیت فراوان در سرعت تولید ، دقت تولید ، سرعت نصب ، دقت نصب ، سبکی ، ضد زنگ بودن ، تنوع رنگ ، مقاومت در برابر مواد شیمیایی ، قابلیت شستشو ، غیر قابل اشتعال بودن ، عدم تغیر شکل و تغیر رنگ ، خود کشی و فرو پاشی نکردن ، شکم ندادن ، سهولت دسترسی به پشت سقف ، قابلیت تعمیر و تعویض موضعی ، خدمات پس از فروش و ... از ورق آلومینیوم برشکاری و خمکاری شده در این محصول استفاده میگردد و موادی چون آهن ، چوب ، پلاستیک ، پی وی سی ، ... نتوانسته اند جایگاهی در این محصول پیدا نمایند.

 در تولید گریلیوم میتوان از انواع ورق آلومینیوم

 1-آبکاری ( آنادایز ) و پیش رنگ شده - با مزیت کاستن زمان تولید ( بدلیل حذف زمان رنگ کاری )

 2-خام - با مزیت تنوع در انتخاب رنگ های الوان و دکورال و کیفیت برتر ( بدلیل رنگ کاری قطعات پس از فلزکاری ) بهره جست.

التزام به رعایت استاندارد جهانی در ایجاد گام های 60 سانتی و داشتن تعداد 3 و 4 و 5 و 6 و 7 و ... سلول سالم در این گام ها ، قابلیت تولید گریلیوم را به چشمه های با ابعاد 20 و 15 و 12 و 10 و 8.6 و ... سانتی محدود مینماید ، گرچه برای تولید سفارشی محدودیتی وجود ندارد. توجه به ارتفاع تیغه های تولید شده و تمایل به دیده نشدن فضای پشت سقف ( در زاویه ای بین 22.5 الی 30 درجه نسبت به افق ) فاصله محور چشمه ها گزینش میگردد.

ادامه مطلب...


دیافراگم بادکنکی سیستمی مبتنی بر فن آوری ترکیبی پیوند هوا و فولاد می باشد . این سیستم دال دو طرفه مجوفی است که در آن استفاده از توپ های پلاستیکی باعث حذف بتن غیر باربر می گردد.

این سیستم سازه ای اولین بار توسط آقای برونینگ یکی از مهندسان عمران دانمارکی معرفی شده و مورد بحث و آزمایشات متعدد قرار گرفت. گزارشات آزمایش ها در دانشگاه آیندهون هلند، موید آن بوده است که سقف بادکنی هم از لحاظ تئوری و هم عملی با دال توپر هم در کوتاه مدت و هم بلند مدت قابل مقایسه می باشد و رفتار مشابه دارد .
اصول اولیه و انواع این دال ها
این ساختار در نتیجه شکل هندسی دو مولفه مشخص سازه ای به ترتیب زیر به وجود می آید :
الف – توری مشبک تقویتی جوش شده ( در بالا و پایین )
ب – توپ های پلاستیکی مجوف ( در وسط )
هنگامی که توری های مشبک تقویتی در بالا و پایین به یکدیگر وصل شده و توپ های پلاستیکی بین این دو شبکه قرار داده شوند ، یک مدول پایدار این سازه ساخته می شود . توری های مشبک تقویتی توپ ها را در محل دقیق و تعیین شده نگه داشته ، توزیع نموده و قفل می نماید. همزمان با آن توپ های پلاستیکی سطح بین دو توری را پر کرده و فضایی مجوف تولید می کنند. هنگامی که توری فولادی بالا و پایین بتن ریزی می شوند ، یک دال مجوف دو طرفه یکپارچه به دست می آید.
مزایای این سیستم در مقایسه با دال بتنی
آزمایشات صورت پذیرفته در دانشگاه های مختلف اروپایی این نوع سازه ها را با دال های تو پر هم به طور عملی و هم تئوری مقایسه نموده اند که نتایج زیر حاصل شده است :
1- صرفه جویی در مصالح مصرفی در سقف ( سیمان ، سنگدانه ، آب و فولاد ...) – هر یک کیلو گرم پلاستیک ، جایگزین صد کیلوگرم بتن می شود – اگر یک دال بتنی را با یک دال بتنی مجوف بادکنکی ، با ضخامت یکسان در نظر بگیریم ، مصالح مصرفی در سقف بادکنکی حدودا 34 درصد کمتر می باشد.
2- مقاومت در برابر زمین لرزه (به علت کاهش وزن )
3- کاهش وزن سقف باعث ایجاد آزادی عمل در طرح معماری – انتخاب شکل مناسب سازه ای - ساخت طره های بزرگتر – ایجاد دهانه های بزرگ با تکیه گاه های کمتر می گردد.
4- با در نظر گرفتن جرم یکسان در مقایسه این دو سقف ، صلبیت سقف بادکنکی سه برابر دال بتنی توپر می باشد.
5- مقاومت در برابر آتش – (اجرا و ساخت ایمن در برابر آتش – مقاومت در برابر آتش از 180-60 دقیقه )
6- برای هر ترکیب دلخواه دهانه و ضخامت ، دال مجوف بادکنکی ، 5 تا 16 درصد ارزانتر از دال توپر تمام می شود.
7- این سیستم سازه ای توزیع بار را به نحو بهتر و بهینه تری از انواع دیگر دال های مجوف صورت می دهد . به علت داشتن ساختار و رفتار سه بعدی و هدایت جریان بار کره های پلاستیکی تو خالی هیچ اثر منفی نداشته و باعث هیچگونه اتلاف مقاومتی نمی گردد.
8- تاثیر تو پ ها را در فرآیند گیرش بتن قابل توجه است . ( توپ های پلاستیکی مشابه افزودنی های پلاستیکی بتن ، عمل می کنند. )
9- این سقف مقاومت و رفتار خمشی مناسب تری دارد .
10- آزمایشات نشان می دهند که مقاومت برشی در این نوع سازه ها ، حتی از مقادیر پیش بینی شده نیز بیشتر بوده و این نشانگر تاثیر مثبت توپها می باشد.
11- مقایسه این نوع دال ها با دال های توپر در خزش هیچگونه تفاوت قابل توجهی را نشان نمی دهد .
12- کاهش هزینه های حمل و نقل
13- زمان کوتاهتر ساخت ( 20% - 40% )
14- عمر مفید و طولانی تر ساختمان ( طول عمر سازه با به کار گیری این سیستم در حدود 10 برابر بیشتر شده و می توان در صورت لزوم قطعات مستهلک و قدیمی را با قطعات جدید تعویض نمود. )
15- قابلیت عایق صوتی بودن این نوع دال بیشتر از دال توپر می باشد. (مهم ترین علت این امر وجود فضای مجوف در المانهای میانی این نوع دال می باشد.)


آب بند چیست و مناسب ترین نوع آن کدام است؟

سال هاست استفاده از آب بند (واتر استاپ) به منظور آب بندی درزهای اجرایی و محل های قطع بتن (Construction Joint) متداول است. امروزه تمامی کشورهای توسعه یافته و پیشرفته از آب بندهای هیدروفیلیک یا بنتونیتی برای آب بندی درزهای اجرایی استفاده می کنند نه نوع P.V.C آن، زیرا محل ثابت سازی آب بندها در بین آرماتورها می باشد و با گذشت چند سال از عمر سازه و بررسی شرایط آرماتورها و بتن مشاهده می کنیم آرماتورهای طولی و عرضی که در سمت آبگیر سازه قراردارند به واسطه عبور آب از طریق درز سرد موجود بین مقاطع بتن ریزی شده و لوله های موئین ناشی از تبخیر آب بتن، دچار زنگ زدگی شده که در برخی از موارد با انبساط 6 الی 15 درصدی حجم آرماتورها، بتن دچار ترک خوردگی می گردد. این نقصان عاملی جهت تشدید نفوذپذیری و کاهش شدید طول عمر سازه بتنی می باشد. آب بندهای هیدروفیلیک یا بنتونیتی علاوه بر سهولت و سرعت بسیار زیاد در نصب تمامی نواقص فوق الذکر را رفع می کنند.
برای آب بندی یک سازه بتنی باید دو کار اساسی صورت بگیرد:
•  آب بندی خود بتن توسط بتن مناسب
•  آب بندی درزهای بتن توسط واتراستاپ

که هر دو صورت می بایست برقرار باشد.

ادامه مطلب...

دانستن انواع شمع ها و روش های ساخت و نصب شالوده های شمعی مستلزم فهم علمی رفتار آنهاست.

  راهکارهای عملی طراحی شمع ها

1-        اطلاعات لازم و مکفی از شرایط ژئوتکنیکی محل

2-        شناخت دقیق نیروها و لنگرهای وارده از روسازه از نظر نوع، مقدار و جهت و اولویت بندی آنها

3-        شناخت عوامل محیطی از نظر آثار کوتاه مدت و دراز مدت بر مصالح شمع

4-        شناخت وضعیت پیرامون پروژه برای تصمیم گیری در مورد شیوه اجرای شمع

5-        انتخاب نوع شمع

6-        بررسی امکان پذیری ساخت وتولید شمع برای پروژه و محدودیت های ابعادی

7-        برگزیدن روش نصب شامل کوبشی، چکش زدن، در جا ریختن و ...

8-        تعیین عمق مدفون شمع با توجه به شرایط خاک، بارهای موجود و امکانات اجرایی

9-        آرایش شمع های گروهی و تعیین نحوه عملکرد گروه و توجه به نکات مؤثر در طراحی از جمله  تداخل شمع، ضریب کارایی، ...

10-      تعیین توان کاربری شمع (تکی یا گروهی) با استفاده از تحلیل های معتبر استاتیکی

11-      تعیین توان باربری شمع با استفاده از آزمایشات درجا یا آزمایشات دینامیکی و تدقیق توان باربری

12-      دخالت دادن عوامل مؤثر پیرامونی برتوان باربری بدست آمده

13-      کنترل و ارزیابی نشست سیستم شالوده

14-      طراحی سازه ای شمع و کلاهک سه شمع

15-     انجام آزمایشات عملی بار گذاری استاتیکی یا دینامیکی(در صورت لزوم و صلاحدید) به منظور اطمینان از صحت اجرا و عدم آسیب دیدگی شمع ها در حین اجرا

16-     تعیین ضریب اطمینان

ادامه مطلب...

همانطوریکه تاریخ دانان و تاریخ نویسان غربی خوداذعان نموده اند اولین سازندگان سر پناه و به عبارتی ساختمان در گیتی ایرانیا ن بوده اند که به علت شرایط جغرافیایی منطقه نمی توانستند در غارها زندگی کنند و به همین خاطر دیوارهایی را به ارتفاع قدشان ویا کمی بلندتر می ساختند و بعد تنه درختان را صاف کرده و روی دیوارها می انداختند که ما امروزه به آن نام تیرداده ایم و روی تیر ها را با پوشال گیاهان منطقه می پوشاندند و درواقع ایزولاسیون می کردند واین سازه که ما در اصطلاح امروزی ساختمان بنایی به آن داده ایم مربوط به حداقل شش الی هفت هزار سال پیش است که دریاچه مرکزی ایران واقع در دشت کو.یر و دشت لوت در اثر گسل به وجود آمده و آتشفشان دماوند خشک نشده بود و شهر سیلک ( کاشان ) به عنوان پایتخت ایران به حساب می آمدکه ملکه مادر (ماما) بعنوان پادشاه ایران که ایرانبان(ایران بانو ) خوانده می شد در آن زندگی می کرد که باهوش ترین زن ایران بود و با قایقی که گوزنها آن را می کشیدند سراسر دریاچه مرکزی را می گشت وبه شهرهای ایران در شمال و جنوب و شرق و غرب سر کشی می کرد و همین هوش آنان بود که موجب پیشرفت در ساخت خانه و بعدها در دوران هخامنشی در شهر سازی گردید .

در دوران هخامنشیان ایرانیان پی ستونها را از پائین به هم وصل می کردند و در واقع فنداسیون نواری اجرا می کردند و ستونها را در بالای ساختمان هم به هم متصل می کردند یا شاه تیرها را اجرا می کردند و بدین ترتیب یک ساختمان اسکلت سنگی ، چوبی می ساختند تا در مقابل زلزله مقاوم باشد و به همین خاطر است که اندیشمندان تاریخ دنیا ایرنیان را اولین مهندسان ساختمان وراهسازی می دانند ولی خود ما از آن غافل هستیم و این اتمی از تاریخ پرشکوه ایران است و وظیفه ما تلاش برای پیشرفت ایران

ادامه مطلب...

تماس با پشتیبانی

سایت دانلود مهندسی عمران و معماری

تلفن:   02144129247

همراه: 09122847548

ایمیل:این آدرس ایمیل توسط spambots حفاظت می شود. برای دیدن شما نیاز به جاوا اسکریپت دارید

بیشترین دانلود ها

دانلود نمونه قرارداد پیمانکاری ساختمان

کانال تلگرام ما

کانال تلگرام عمران، معماری و صنعت ساختمان

فیلم های دکوراسیون و طراحی داخلی

ورود به کانال تلگرام

موضوعات دانلود

جزوات درسی و گزارش کارآموزی